一个长,宽,高分别为 m,n,p 的长方体被分割成个 m*n*p 个小立方体。每个小立方体内有一个整数。试设计一个算法,计算出所给长方体的最大子长方体。子长方体的大小由它所含所有整数之和确定。对于给定的长,宽,高分别为 m,n,p 的长方体,计算最大子长方体的大小。
输入数据的第 1 行是 3 个正整数 m,n,p,1≤m,n,p≤50。接下来 m*n 行每行 p 个正整数,表示小立方体中的数。
输出计算出的最大子长方体的大小。
3 3 3 0 -1 2 1 2 2 1 1 -2 -2 -1 -1 -3 3 -2 -2 -3 1 -2 3 3 0 1 3 2 1 -3
14